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ABSTRACT 

The predictive value of 18F-fluorodeoxyglucose (FDG) PET for conversion from mild cognitive 

impairment (MCI) to Alzheimer’s dementia (AD) is currently under debate. We used a principal 

component analysis (PCA) to identify a metabolic AD conversion-related pattern (ADCRP) and 

investigated the prognostic value of the resulting pattern expression score (PES).  

Methods: FDG PET scans of 544 MCI patients obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database were analyzed. We implemented voxel-based PCA 

and standard SPM (as reference) analyses to disclose cerebral metabolic patterns associated with 

conversion from MCI to AD. By Cox proportional hazards regression we examined the 

prognostic value of candidate predictors. Also, we constructed prognostic models with: i) 

clinical, ii) imaging, and iii) clinical and imaging variables in combination.  

Results: PCA revealed an ADCRP that involved regions with relative decrease in metabolism 

(temporoparietal, frontal, posterior cingulate and precuneus cortex) and relative increase in 

metabolism (sensorimotor and occipital cortex, cerebellum and left putamen). Among the 

predictor variables age, sex, functional activities questionnaire (FAQ), mini-mental state 

examination (MMSE), apolipoprotein E (APOE), PES and normalized FDG uptake (regions with 

significant hypo- and hypermetabolism in converters compared to non-converters), PES was the 

best independent predictor of conversion (Hazard Ratio = 1.77 per z-score increase, 95% C.I.: 

1.24 - 2.52, p < 0.001). Moreover, adding PES to the model including the clinical variables 

significantly increased its prognostic value.  

Conclusions: The ADCRP expression score is a valid predictor of conversion. Combining 

clinical variables and PES yielded a higher accuracy than each single tool in predicting 

conversion of MCI to AD, underlining the incremental utility of FDG PET. 
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INTRODUCTION 

Subjects with mild cognitive impairment (MCI) are at high risk of converting to Alzheimer’s 

dementia (AD), but they can also develop a different type of dementia, remain stable or even 

regress to a normal aging process (1). Various studies have shown that MCI patients exhibit 

metabolic changes that can be detected with 18F-fluorodeoxyglucose (FDG) PET (2-5). However, 

a limited prediction accuracy of conversion from MCI to AD by FDG PET was reported by some 

studies (6-8). Likewise, a Cochrane review did not recommend using FDG PET for this purpose 

(9), although this has been a matter of controversy (10).  

Principal component analysis (PCA) was proposed as an alternative voxel-wise approach 

of image analysis for the diagnosis of neurodegenerative disorders. PCA has shown its value in 

the development of disease-specific spatial covariance patterns of regional metabolism 

characterizing disorders like Parkinson’s disease (PD), multiple system atrophy, progressive 

supranuclear palsy, and corticobasal degeneration (11-15). Moreover, a high predictive value of 

PCA was shown in PD with cognitive decline, suggesting that the pattern expression score (PES) 

of a PD-cognition related pattern is a useful biomarker for prediction of conversion of PD-MCI 

to PD with dementia (16,17). In this study, we used PCA and FDG PET to determine whether 

there is a specific metabolic pattern associated with conversion of MCI to AD (termed AD 

conversion-related pattern, ADCRP). In particular, we aimed to examine the potential of ADCRP 

expression alone and in combination with clinical variables for predicting the conversion of MCI 

to AD.   
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MATERIALS AND METHODS 

Patients’ Data and Diagnoses 

FDG PET scans obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, 

ClinicalTrials.gov Identifier: NCT00106899) were used in this study. The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

information about study protocols and ADNI project can be found at www.adni-info.org. The 

study was approved by ADNI and written informed consent was obtained by ADNI from all 

subjects and before protocol-specific procedures are carried out (see ADNI protocols). 

For the present analysis we used ADNI 1, ADNI 2 and ADNI GO cohorts. Participants (n 

= 576) were evaluated at baseline, and in 6 to 12-month intervals following initial evaluation for 

up to 10 years. FDG-PET scans acquired at the baseline visit were used in the present analysis. 

We included the subjects who were diagnosed with MCI and had a mini-mental state 

examination (MMSE) score of at least 24 points at the time of PET imaging (n = 6 excluded). 

Additionally, we requested a minimal follow-up time of at least 6 months (n = 20 excluded, 

among them n = 10 without follow-up). Furthermore, subjects with a bidirectional change of 

diagnosis (MCI to AD, and back to MCI) within the follow-up time were excluded (n = 6). The 

remaining 544 subjects were dichotomized into MCI patients who converted to AD (MCI 

converters, MCI-c) and those who did not (MCI non-converters, MCI-nc).  

The data was randomly split into training and test datasets of equal sizes (n = 272). Age, 

sex, MMSE and median follow-up time did not differ significantly among two datasets (p > 0.1). 

As expected, the rate of apolipoprotein E (APOE) ε4 carriers was significantly higher and 

functional activities questionnaire (FAQ) was significantly lower for MCI-c versus MCI-nc in 
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each of the datasets but comparable per subgroup between the two datasets. The clinical and 

demographic characteristics of the datasets are given in Table 1. 

 

PET Imaging 

The PET data acquisition details can be found online in the study protocols of the ADNI project. 

In 487 cases dynamic 3D scans with six 5-min frames were acquired 30 minutes after injection 

of 185 ± 18.5 MBq FDG. In the rest of the cases (N = 57), patients were scanned with a static 30-

minutes acquisition. In case of dynamic scans, all frames were motion-corrected to the first 

frame and then summed up to create a single image file.  

Individual scans were spatially normalized onto an in-house FDG PET template in 

Montreal Neurological Institute brain space and smoothed with an isotropic Gaussian kernel of 

12 mm full-width at half maximum. All preprocessing was implemented with an in-house 

pipeline in MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States) and 

Statistical Parametric Mapping (SPM12) software (www.fil.ion.ac.uk/spm) following 

recommendations for optimal statistical analysis of brain FDG PET scans in the context of MCI 

to AD conversion (18).  

 

Multivariate Principal Component Analysis 

Scaled subprofile model (SSM) PCA was used to generate an SSM pattern based on group 

discrimination between MCI-c and MCI-nc. It was implemented on the training dataset of 272 

subjects using the Scanvp/SSMPCA toolbox (19). Each subject’s 3D image data was first 

converted to a continuous row vector, and then embedded in a group data matrix. Each data entry 

was transformed to logarithmic form, and data matrix was centered by each row mean value. The 
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deviation from both subject and group means represents the resulting subject residual profile 

image. PCA is applied to the covariance matrix to derive orthogonal eigenvectors and associated 

eigenvalues. These spatial eigenvectors are principal components (PC) image patterns given by 

the SSM/PCA analysis.  

PCs related to the explored group difference are associated with the highest total variance 

accounted for by the eigenvector. To delineate topographies associated with conversion from 

MCI to AD, we performed voxel-wise PCA on the combined group of MCI-c and MCI-nc in the 

training dataset. To identify a significant pattern, different combinations of PCs were tested 

based upon the following statistical criteria: the analysis was limited to the first set of contiguous 

PCs that account for the top 50% of the variability in the dataset, and the best combination of 

these PCs was selected by a logistic regression analysis with group (i.e., MCI-c and MCI-nc) as 

the dependent variable and subject scores for the PCs as the independent variable. The obtained 

ADCRP represents spatially covariant voxels associated with the conversion to AD, with each 

voxel being specifically weighted towards its relative contribution. For both, training and test 

datasets each individual’s PES of the ADCRP was evaluated by the topographical profile rating 

algorithm involving computation of the internal vector product of the subject’s residual profile 

vector and the pattern vector (20). 

Additionally, we performed a voxel-wise two-sample t-test between FDG scans of MCI-c 

and MCI-nc from the training dataset by SPM. This analysis compared differences in normalized 

FDG uptake by applying proportional scaling to minimize the effect of inter-subject variability 

of global FDG uptake. The p-value adjustment for contrasts was set to family-wise error 

corrected (FWEC) p < 0.05. The resulting volumes of interest (SPM VOIs) comprising all 

significant clusters of relative hypo- and hypermetabolism were then used to extract the 
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individual normalized FDG uptake inside these SPM VOIs after the subject’s scan has been 

normalized using a predefined mask of brain parenchyma. Mean uptake in the hypo- and 

hypermetabolic VOIs were linearly combined with weighting defined by logistic regression. 

Mean uptake in only hypometabolic clusters was also included for comparison given that this is a 

commonly used measure of abnormal brain regions in clinical dementia imaging.  

 

Cox Model Analysis 

For each individual the baseline time was considered to be the time of the PET imaging, and the 

end point was chosen to be the time of AD diagnosis for MCI-c or last follow-up time for MCI-

nc. Cox proportional hazards regression models were calculated in R (http://www.R-project.org/) 

employing the ‘Survival’ package (21) in order to test the predictive value of the following FDG 

PET variables and clinical variables for conversion from MCI to AD: PES (ADCRP from PCA), 

mean normalized FDG uptake (within SPM VOIs), FAQ, APOE ε4 genotype (positive or 

negative for the presence of at least one ε4 allele), and MMSE. Cox model analyses were 

adjusted for age at baseline (years) and sex (1 for male, 0 for female). All continuous covariates 

were z-transformed such that the hazard ratio (HR) reflects risk changes per standard deviation 

increase.   

 First, in order to compare the HR of independent predictor variables, a Cox model 

including all predictors (PES, normalized FDG uptake, FAQ, APOE, MMSE, age and sex) was 

computed on the training dataset using the ridge regression option to account for 

multicollinearity.  

Second, we examined three Cox models including identified significant predictors 

adjusted for age and sex for the training dataset with: i) clinical (FAQ, APOE and MMSE), ii) 
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imaging (PES of ADCRP), and iii) combined (FAQ, APOE, MMSE and PES) variables. The 

prediction accuracy of each model was statistically compared by Harrell’s concordance C. 

 For the sake of validation of the constructed models, the results of each Cox model were 

independently applied to the test dataset via calculation of the prognostic index (PI) for each 

subject (22). Here, the PI is the sum of the product of the regression coefficients ߚ and predictor 

variables ݔ (with ݅ being the index for the order of predictors in the model), as follows: PI ൌ

ଵݔଵߚ	  ⋯	ߚݔ. Based on the values of PI, the test dataset was stratified into three equally-

sized risk groups. Separation between models was compared by Kaplan-Meier survival curves 

and Akaike information criterion (AIC). Risk group separation based on PI values of the 

combined model (FAQ, APOE, MMSE and PES) was compared to group separation based on 

PES values only (i.e., ‘raw’ values of PES, not PI).   
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RESULTS 

AD Conversion-Related Pattern 

We limited the PCs estimated by our SSM/PCA analysis to the first seven PCs that accounted for 

52.05% of the total variance. However, only PCs number 2, 3, 6, and 7 were selected by logistic 

regression and showed a significant between-group difference after Bonferroni correction (p < 

0.05). The logistic regression model including these PCs yielded the highest significance and 

lowest AIC in comparison to the other combinations. Therefore, PC2, PC3, PC6 and PC7 were 

linearly combined to yield the ADCRP (Figure 1A), which allows for a significant separation 

between groups of MCI-c and MCI-nc (p = 9×10-13). For comparison, the more restricted, 

although overlapping pattern of regions with significant hypo- and hypermetabolism in MCI-c 

compared to MCI-nc derived by SPM is shown in Figure 1B.  

The most prominent decreases of metabolism in MCI-c compared to MCI-nc on ADCPR 

were found in the temporoparietal cortex as well as the precuneus/posterior cingulate cortex. 

Furthermore, decreases were also found in the right frontal cortex, but with a lower factor 

loading to the pattern in total. Relative increases (probably corresponding to regions with 

preserved metabolic activity) were detected in sensorimotor and occipital cortices, cerebellum, 

and in the left putamen. 

Topographical profile rating of ADCRP for each subject of the training and test datasets 

resulted in a PES, which can be used to assess the degree to which a subject expresses this 

pattern. There was no difference in PES between the two MCI-c groups (training vs test dataset, 

p > 0.1) or between the two MCI-nc groups (training vs test dataset, p > 0.1). Based on receiver 

operating characteristics (ROC) analyses, the area under ROC curve (AUC) for separation 

between MCI-c and MCI-nc reached AUC = 0.749 in the training dataset and AUC = 0.761 in 
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the test dataset, which verifies high stability of the pattern across the subject cohorts. Similar 

separation was achieved based on mean normalized FDG uptake values obtained with the linear 

combination in both hyper- and hypometabolic SPM VOIs (normalized FDG uptake = -4.82 + 

12.52 * mean FDG uptake in hypometabolic clusters - 9.52 * mean FDG uptake in 

hypermetabolic clusters): AUC = 0.758 for the training dataset and AUC = 0.760 for the test 

dataset. Normalized FDG uptake in the hypometabolic VOI alone showed a lower AUC, but was 

included for comparison as a commonly used measure of abnormal brain regions (Supplementary 

Figure 1).  

 

Cox Models 

First, in the training dataset the Cox proportional hazards regression with age, sex, FAQ, MMSE, 

APOE, PES and normalized FDG uptake as predictors was computed, penalized by ridge 

regression to suppress collinearity among predictors (Figure 2). PES (ADCRP), normalized FDG 

uptake (SPM VOIs), FAQ and MMSE were significant predictors, with PES having the highest 

HR of 1.77 (95% C.I.: 1.24 - 2.52, p < 0.001).  

 Then, we examined (1) imaging and (2) clinical models, and later joined them into (3) a 

combined Cox model to investigate a possible additive prognostic value of PES to the clinically 

established predictors APOE, FAQ and MMSE. The variables included in each model and their 

corresponding HRs are presented in Table 2. The results of the imaging Cox model showed PES 

to be a significant predictor for conversion from MCI to AD with the hazard ratio for z-

transformed PES of 2.96 (95% C.I.: 2.35 - 3.74, p = 2×10-16). Age and sex were no significant 

predictors in any of the models.  
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While the clinical model (Harrell’s C = 0.80) showed higher accuracy than the imaging 

model (Harrell’s C = 0.76), adding PES to the clinical variables significantly (p < 0.001) 

increased the prognostic value (combined clinical variables and PES: Harrell’s C = 0.84). The 

quality of statistical models was tested with the AIC test (combined model AIC = 749.6, imaging 

model AIC = 783.3, clinical model AIC = 797.2): the combined model was significantly better 

than the imaging model (p < 0.001), and the imaging model significantly better than the clinical 

model (p = 0.007). Thus, the combined model is the preferred model with the minimum AIC 

value.  

Second, Cox models were validated on the test dataset. We obtained PIs that were used 

for the survival analysis. Similar to the training dataset, the clinical model of the test dataset had 

a higher Harrell’s C than the imaging model (C = 0.77 vs. C = 0.73, respectively). The increase 

of the prognostic value of the clinical model, when PES was added as a predictor to yield the 

combined model, was also confirmed in the test dataset (combined model C = 0.81).  

Normalized FDG uptake (SPM VOIs) as a single predictor showed a lower HR and 

significance level compared to PES (ADCRP), see Figure 2. However, as it is a commonly used 

measure in neuroimaging analysis, we constructed similar clinical, imaging and combined Cox 

models with normalized FDG uptake (analogously to those with PES): significant increase in 

predictive value of the clinical model (C = 0.80 and C = 0.77, for the training and test datasets 

respectively) was observed when FDG uptake was added as predictor (imaging model C = 0.76 

and C = 0.73; combined model C = 0.84 and C = 0.81), and AIC indicated the combined model 

as the best model.  

The combined model with normalized FDG uptake (SPM VOIs) had a significantly lower 

predictive value than the combined model with PES (combined model with PES: AIC = 749.6, 
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combined model with normalized FDG uptake: AIC = 751.6; p < 0.001, likelihood-ratio test). 

The detailed results of the clinical, imaging and combined Cox models with normalized FDG 

uptake for the training and test datasets can be found in supplementary materials (Supplementary 

Table 1).  

 

Risk Group Stratification  

In the test dataset, we tested whether risk groups were better separated by PI derived from the 

combined model (including PES) or by PES values alone (Figure 3). Both models demonstrated 

a good separation between three groups with high, medium and low risk of conversion to AD. 

The best stratification was reached with the PI resulting from the combined model. This method 

allows accounting for all available variables at once including time to conversion of the training 

dataset used for definition of the Cox model. The most noticeable difference is observed in the 

first 60 months and comparison between the risk strata is statistically limited after this time point 

due to the small number of subjects left (Table 3).   
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DISCUSSION 

Using FDG PET data in a combination with voxel-based PCA we identified a metabolic pattern 

associated with conversion from MCI to AD. Aside from constructing the ADCRP, we estimated 

its predictive accuracy in a large cohort of subjects and prospectively confirmed its validity on 

the test dataset. 

The obtained network topography is consistent with previously published hypo- and 

hypermetabolic regions identified in AD (3,17,23,24). We found that conversion to AD is 

characterized by a significant metabolic decrease in temporoparietal regions, right frontal cortex, 

posterior cingulate and precuneus cortex, while occipital cortex, sensorimotor cortex, 

cerebellum, and left putamen showed relatively increased metabolic activity. The latter most 

likely corresponds to preserved metabolic activity, given that proportional scaling by global 

uptake was performed. We also analyzed the same groups of subjects with SPM t-test, which 

indicated overlapping regions of hypo- and hypermetabolism, which, however, were much more 

restricted.  

Although we observed some similarities between the topography of ADCRP and the 

distribution of regional metabolic differences depicted by SPM in the current study, these results 

portray very different measures of brain function. Indeed, the ADCRP from spatial covariance 

analysis uses variance information of glucose metabolism measured on FDG PET. By contrast, 

maps of SPM t-test revealed regional differences in mean value of normalized glucose 

metabolism. It has been shown consistently that the PCA approach has a higher sensitivity 

compared to SPM group comparisons regarding the detection of brain regions with metabolic 

changes in neurodegenerative disorders such as AD (23) and PD (25), or in subjects with 

idiopathic rapid eye movement sleep behavior disorder (26,27). This is further supported by the 
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observation that the pattern expression score of the AD-related pattern (ADRP) had a higher 

accuracy in group discrimination than metabolic changes measured in regions of interest (23,28). 

Superior performance of PES as a predictor compared to normalized uptake in SPM VOIs in the 

present study is consistent with these prior results. Moreover, the computation of the degree of 

pattern expression in the individual patient is performed automatically and blind to the clinical 

information. Thus, this approach is potentially more objective than any diagnostic categorization 

achieved by visual reads or predefined ROI analysis.  

In contrast to the ADRP of Teune et al. (24), we focused our study not on the differences 

between AD and normal elderly controls, but on the prodromal phase of AD. The metabolic 

pattern at the MCI stage might be particularly influenced by compensatory neural mechanisms 

(29), which may be reflected in the metabolic pattern. However, Meles et al. (30) investigated 

the expression of the ADRP (24) in an MCI cohort and reported a comparable AUC (AUC = 

0.80). Similarly to the papers mentioned above, we observed a significant inverse correlation 

between PES and MMSE (r = - 0.27, p < 0.001). In addition, we found significant positive 

correlation between PES and clinical dementia rating scale sum of the boxes (r = 0.37, p < 

0.001), and PES and Alzheimer’s disease assessment scale (cognitive subscale total 11 sum 

score) (r = 0.36, p < 0.001), indicating a significant association between expression of the 

detected pattern and cognitive impairment. No correlation was found for PES and sex or age in 

both datasets (not shown in detail). 

Although various biomarkers have been already examined as predictors in regression 

models, our study examined imaging (PES; normalized FDG uptake in linearly combined VOIs 

with significant hypo- and hypermetabolism) along with genetic (APOE), sociodemographic 

(age, sex), and cognitive (FAQ, MMSE) variables in Cox model analyses to rate the progression 
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of MCI to AD. As a single predictor, PES has shown a higher hazard ratio than FAQ, MMSE, 

APOE or normalized FDG uptake. We found that the imaging Cox model with PES was 

comprehensive, and provided significant enhancement in predicting conversion when combined 

with clinical variables. Since ROC analysis does not include time-to-event information, the AIC 

and Harrell’s C were used instead to evaluate the performance of the prediction. The 

combination of imaging and clinical variables gave the best prediction similarly to the study by 

Liu et al. (3).  

It was shown that PES could be applied to a new subject on a single-case basis, despite 

the subjects have been scanned on different PET systems (12,30). The benefit of the current 

study is the ability to combine the disease-related network pattern with the clinical variables to 

obtain per subject a quantifiable prognostic index for the conversion of MCI to AD. While PES 

itself is a good predictor and can be used to predict conversion, the combination of PES with 

clinical variables and calculation of PI gives better stratification, which may be a particularly 

attractive approach for single-subject predictions (Figure 3). For instance, a subject might be 

assigned to one of the defined groups based on its PI value, and acquainted with its most 

probable median ‘conversion-free’ time. These results are of great importance not only from a 

research standpoint (e.g., patient involvement in clinical trials) but also for clinical purposes.  
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CONCLUSION 

Our results confirm the predictive value of FDG PET in patients with MCI. The PCA technique 

showed its applicability for the differentiation between MCI subjects converting to AD and 

stable MCI subjects. The PES of the ADCRP was identified as a valid predictor of conversion, 

and the combination of clinical variables with PES yielded a higher predictive value than each 

single tool.   
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FIGURE 1. Patterns of regional brain metabolism. (A) ADCRP derived by PCA (p < 0.05) 

and (B) significant regions derived by SPM t-test (SPM {T}, FWEC p < 0.05), overlaid on MRI 

template image. Voxels with negative region weights and hypometabolism are given in ‘cool’ 

colors, and regions with positive region weights and hypermetabolism are depicted in ‘hot’ 
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colors. Data is presented in neurological orientation. ADCRP, Alzheimer’s dementia conversion 

related pattern; PCA, principal component analysis. 

 

 

FIGURE 2. Hazard ratios of different predictors, penalized by ridge regression to suppress 

the effects of multicollinearity among them. Normalized FDG uptake stems from a linear 

combination of normalized FDG uptake in VOIs with significant hypo- and hypermetabolism. 

APOE reference: APOE positive, sex reference: female. PES, pattern expression score; n., 

normalized; FAQ, functional activities questionnaire total score; APOE, apolipoprotein E; 

MMSE, mini-mental state examination; N, number of subjects. All continuous variables are z-

transformed. 
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FIGURE 3. Kaplan-Meier curves of the test dataset. A – risk strata using the PES alone, B – 

risk strata using the PI of the combined model. PES, pattern expression score; PI, prognostic 

index. 
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TABLE 1.  Clinical and demographic characteristics of the training and test datasets. 

 Training dataset (n = 272) Test dataset (n = 272) 

 MCI-c  

(n = 87) 

MCI-nc  

(n = 185) 

MCI-c  

(n = 94) 

MCI-nc  

(n = 178) 

Age [years] 75 ± 7 74 ± 8 73 ± 7 73 ± 8 

Sex [M/F] 56/31 116/69 54/40 108/70 

MMSE 27 ± 2 28 ± 2 27 ± 2 28 ± 2 

APOE ε4 positive rate 63% 43% 70% 42% 

FAQ 1.74 ± 3.1 4.44 ± 4.7 1.70 ± 3.0 4.97 ± 4.7 

Median follow-up time, 

[95%CI] 

and (interquartile range) 

[months] 

 

48 [47-49] 

(21.3)  

 

47 [47-49] 

(26.5) 

 

47 [46-48] 

(29.0) 

 

47 [46-48] 

(18.0) 
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TABLE 2. Characteristics of the Cox regression models.  
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Imaging model                    PES 2.96 2×10-16 

783.3b,c 0.76 0.73  Age 1.01 0.87 

 Sex 0.98 0.93 

Clinical model                     Age 1.00 0.95 

797.2a,c 0.80 0.77 

 Sex 1.18 0.48 

 FAQ 1.66 2.0×10-10 

 APOE 1.85 0.007 

 MMSE 1.54 3.5×10-5 

Combined model                 PES 2.46 7.1×10-13 

749.6a,b 0.84 0.81 

 Age 1.01 0.90 

 Sex 1.08 0.72 

 FAQ 1.49 2.2×10-6 

 APOE 1.36 0.18 

 MMSE 1.51 0.0001 

All continuous variables are z-transformed. Significance level: a p = 8×10-9, b p = 4×10-10, c p = 

0.007. AIC, Akaike information criterion. 
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TABLE 3. Separation of risk strata by different models. 

 Hazard ratio 
Median time to 

conversion (months) 
Pairwise Log-Rank P-value 

 

L
ow

 r
is

k 

M
ed

iu
m

 

ri
sk

 

H
ig

h 
ri

sk
 

L
ow

 r
is

k 

M
ed

iu
m

 

ri
sk

 

H
ig

h 
ri

sk
 

L
ow

 v
s 

M
ed

iu
m

 

M
ed

iu
m

 

vs
 H

ig
h 

L
ow

 v
s 

H
ig

h 

PES alone 1 4.62 9.70 120 68 36 1.2×10-5 0.0007 3.0×10-13 

PI of 

Combined 

model 

1 4.75 15.92 120 96 32 8.3×10-8 1.2×10-5 2.0×10-16 
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Supplementary Table 1. Characteristics of the Cox regression models (SPM). 
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Imaging model 

2.89 2×10-16  

788.7b,c  
 

0.76 

 

0.73 
 Norm. FDG uptake 

 Age 1.06 0.57 

 Sex 1.08 0.73 

Clinical model           

1.00 0.95 

797.2a, c 0.80 0.77 

 Age 

 Sex 1.18 0.48 

 FAQ 1.66 2.0×10-10 

 APOE 1.85 0.007 

 MMSE 1.54 3.5×10-5 

Combined model      

2.44 7.5×10-12 

751.6a, b 0.84 0.81 

 Norm. FDG uptake 

 Age 1.04 0.68 

 Sex 1.16 0.52 

 FAQ 1.63 1.2×10-8 

 APOE 1.61 0.03 

 MMSE 1.37 0.002 

All continuous variables are z-transformed. Significance level: a p = 5×10-12, b p = 2×10-9, c p = 

0.1. FDG uptake stems from the linear combination of hypo- and hypermetabolic VOIs. AIC, 

Akaike information criterion.  
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